Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 128
1.
J Hazard Mater ; 472: 134460, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38718505

Parabens can particularly raise significant concerns regarding the disruption of microbial ecology due to their antimicrobial properties. However, the responses of biofilm bacteria to diverse parabens with different alkyl-chain length remains unclear. Here, theoretical calculations and bioinformatic analysis were performed to decipher the influence of parabens varying alkyl-chain lengths on the biofilm bacteria. Our results showed that the disturbances in bacterial community did not linearly response to the alkyl-chain length of parabens, and propylparaben (PrP), with median chain length, had more severe impact on bacterial community. Despite the fact that paraben lethality linearly increased with chain length, the PrP had a higher chemical reactions potential than parabens with shorter or longer alkyl-chain. The chemical reactions potential was critical in the nonlinear responses of bacterial community to alkyl-chain length of parabens. PrP could impose selective pressure to disturb the bacterial community, because it had a more profound contribution to deterministic assembly process. Furthermore, N-acyl-homoserine lactones was also significantly promoted under PrP exposure, confirming that PrP could affect the bacterial community by influencing the quorum-sensing system. Overall, our study reveals the nonlinear responses of bacterial communities to the alkyl-chain lengths of parabens and provides insightful perspectives for the better regulation of parabens. ENVIRONMENTAL IMPLICATION: Parabens are recognized as emerging organic pollutants, which specially raise great concerns due to their antimicrobial properties disturbing microbial ecology. However, few study have addressed the relationship between bacterial community responses and the molecular structural features of parabens with different alkyl-chain length. This investigation revealed nonlinear responses of the bacterial community to the alkyl-chain length of parabens through DFT calculation and bioinformatic analysis and identified the critical roles of chemical reactions potential in nonlinear responses of bacterial community. Our results benefit the precise evaluation of ecological hazards posed by parabens and provide useful insights for better regulation of parabens.

2.
J Phys Chem Lett ; : 5150-5158, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712816

Intrinsic boundaries formed by grain stacks of randomly oriented perovskite crystallites seriously restrict charge transport in the resultant photovoltaic devices, whereas direct passivation of these defects remains unexplored, and it is desirable to modulate perovskite growth with uniform orientation. Herein, we report a simple but effective method to regulate perovskite crystallization by employing a volatile and polymerizable monomer of hydroxyethyl methacrylate (HEMA), which can simultaneously interact with both FA+ and Pb2+ via hydrogen and coordination bonding, respectively, to seed perovskite crystallization with accelerated nucleation and retarded crystal growth. Upon thermal annealing, the gradual volatilization and partial self-condensation of the HEMA drive the perovskite growth perpendicularly to the substrate, leading to largely suppressed defect states, improved crystallinity, and a reduced Young's modulus of the perovskite film. As a result, champion efficiencies exceeding 24 and 22% with improved operational and mechanical stability of the optimized perovskite solar cells based on rigid and flexible substrates were finally achieved.

3.
Bioresour Technol ; 401: 130727, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643952

Understanding the different biological responses to salinity gradient between coexisting biofilm and flocs is crucial for regulating the ecological function of biofilm system. This study investigated performance, dynamics, and community assembly of biofilm system under 3 %-7% salinity gradient. The removal efficiency of NH4+-N remained stable and exceeded 93 % at 3 %-6% salinity, but decreased to below 80 % at 7 % salinity. The elevated salinity promoted the synthesis of extracellular polymer substrates, inhibited microbial respiration, and significantly regulated the microbial community structure. Compared to flocs, biofilm exhibited greater species diversity and richer Nitrosomonas. It was found diffusion limitations dominated the microbial community assembly under the salinity gradient. And microbial network revealed positive interactions predominated the microbial relationships, designating norank Spirochaetaceae, unclassified Micrococcales, Corynebacterium, and Pusillimonas as keystone species. Moreover, distinct salinity preferences in nitrogen transformation-related genes were observed. This study can improve the understanding to the regulation of biofilm systems to salt stresses.


Biofilms , Bioreactors , Salinity , Bioreactors/microbiology , Nitrogen , Bacteria/metabolism , Bacteria/genetics
4.
Biosensors (Basel) ; 14(4)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38667194

Deep learning technology has been widely adopted in the research of automatic arrhythmia detection. However, there are several limitations in existing diagnostic models, e.g., difficulties in extracting temporal information from long-term ECG signals, a plethora of parameters, and sluggish operation speed. Additionally, the diagnosis performance of arrhythmia is prone to mistakes from signal noise. This paper proposes a smartphone-based m-health system for arrhythmia diagnosis. First, we design a cycle-GAN-based ECG denoising model which takes real-world noise signals as input and aims to produce clean ECG signals. In order to train its two generators and two discriminators simultaneously, we explore an unsupervised pre-training strategy to initialize the generator and accelerate the convergence speed during training. Second, we propose an arrhythmia diagnosis model based on the time convolution network (TCN). This model can identify 34 common arrhythmia events using eight-lead ECG signals, and we deploy such a model on the Android platform to develop an at-home ECG monitoring system. Experimental results have demonstrated that our approach outperforms the existing noise reduction methods and arrhythmia diagnosis models in terms of denoising effect, recognition accuracy, model size, and operation speed, making it more suitable for deployment on mobile devices for m-health monitoring services.


Arrhythmias, Cardiac , Electrocardiography , Smartphone , Arrhythmias, Cardiac/diagnosis , Humans , Monitoring, Physiologic , Signal Processing, Computer-Assisted , Telemedicine , Algorithms
5.
Int J Nanomedicine ; 19: 3387-3404, 2024.
Article En | MEDLINE | ID: mdl-38617801

Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.


Immune Checkpoint Inhibitors , Neoplasms , Programmed Cell Death 1 Receptor , Immunotherapy , Drug Delivery Systems , CD8-Positive T-Lymphocytes , Neoplasms/drug therapy
6.
J Environ Sci (China) ; 142: 43-56, 2024 Aug.
Article En | MEDLINE | ID: mdl-38527895

Alkali metal potassium was beneficial to the electronic regulation and structural stability of transition metal oxides. Herein, K ions were introduced into manganese oxides by different methods to improve the degradation efficiency of toluene. The results of activity experiments indicated that KMnO4-HT (HT: Hydrothermal method) exhibited outstanding low-temperature catalytic activity, and 90% conversion of toluene can be achieved at 243°C, which was 41°C and 43°C lower than that of KNO3-HT and Mn-HT, respectively. The largest specific surface area was observed on KMnO4-HT, facilitating the adsorption of toluene. The formation of cryptomelane structure over KMnO4-HT could contribute to higher content of Mn3+ and lattice oxygen (Olatt), excellent low-temperature reducibility, and high oxygen mobility, which could increase the catalytic performance. Furthermore, two distinct degradation pathways were inferred. Pathway Ⅰ (KMnO4-HT): toluene → benzyl → benzoic acid → carbonate → CO2 and H2O; Pathway ⅠⅠ (Mn-HT): toluene → benzyl alcohol → benzoic acid → phenol → maleic anhydride → CO2 and H2O. Fewer intermediates were detected on KMnO4-HT, indicating its stronger oxidation capacity of toluene, which was originated from the doping of K+ and the interaction between KOMn. More intermediates were observed on Mn-HT, which can be attributed to the weaker oxidation ability of pure Mn. The results indicated that the doping of K+ can improve the catalytic oxidation capacity of toluene, resulting in promoted degradation of intermediates during the oxidation of toluene.


Manganese Compounds , Manganese , Toluene , Manganese/chemistry , Oxygen/chemistry , Carbon Dioxide , Oxides/chemistry , Oxidation-Reduction , Catalysis , Benzoic Acid
7.
RSC Adv ; 14(11): 7551-7556, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38440270

A mild and environmentally electrochemical method for the synthesis of quinazolines and quinazolinones has been developed through anodic oxidation decarboxylative of α-oxocarboxylic acids. The present reaction was efficiently conducted by using simple and cheap NH4I as the N-source and electrolyte in an undivided cell. The desired products, quinazolines and quinazolinones, were isolated in high yield under chemical oxidant free conditions.

8.
Bioresour Technol ; 399: 130615, 2024 May.
Article En | MEDLINE | ID: mdl-38513926

Heterotrophic ammonia assimilation (HAA), an innovative technology for high-salinity wastewater treatment, demonstrates self-recovery capability following Cr (VI) stress. This study investigated the inhibitory effects and self-restoration mechanisms of Cr (VI) at various stress levels. The removal efficiencies of NH4+-N and Cr (VI) in the HAA gradually decreased with increasing influent Cr (VI) concentration. Exposure to Cr (VI) increased the amounts of high-molecular-weight proteins in soluble microbial products and stimulated the generation of extracellular polymeric substances. Heterotrophic functional microorganisms with Cr (VI) tolerance, such as Marinobacter and Planktosalinus, were enriched. An assimilation pathway gene (glnA) and a Cr (VI)-related gene (atoB) were also upregulated. After ceasing Cr (VI) addition, the HAA system demonstrated a 17.1 % increase in the removal efficiency of NH4+-N, which was attributable to its self-recovery ability. This study provides a scientific and theoretical foundation for the HAA process in resisting the impact of heavy-metal-containing wastewater and self-recovery.


Ammonia , Chromium , Chromium/pharmacology , Wastewater
9.
Phys Chem Chem Phys ; 26(14): 10974-10981, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38526392

Bulk Dirac semimetals (BDSs) possess Fermi energy dependent optical parameters, providing unprecedented opportunities for the study of the controllable Goos-Hänchen (GH) shift. However, the enhancement of GH shifts often comes at the cost of the reflectance in the previous BDS-based structures, which hinders their practical application. In this work, we theoretically present the investigation of the GH shift in a multilayered structure composed of one BDS film and a symmetric one-dimensional photonic crystal (1DPC) with a defect layer. We demonstrate that this well-designed structure supports a large GH shift at the specific working wavelength, whose magnitude can be enhanced up to 3883 times the incident wavelength. In particular, such an enhanced GH shift achieved in this structure is associated with high reflectance (0.94) and these remarkable features can be attributed to the sharp change in the reflective phase and the destructive interference that occurs between the simultaneously excited optical Tamm state (OTS) at the BDS/1DPC interface and the defect state at the 1D defected PC. In addition, we also explore the manipulation of the GH shift by adjusting the Fermi energy of the BDS as well as the geometrical parameter of the multilayered structure. Our results provide a new approach for realizing an enhanced and controllable GH shift in a BDS-based multilayered structure, which endows it with promising prospects for application in optical sensors, optical detectors and beam controllers.

10.
Ther Adv Respir Dis ; 18: 17534666241231117, 2024.
Article En | MEDLINE | ID: mdl-38409671

BACKGROUND: Fractional exhaled nitric oxide (FeNO) measured at multiple exhalation flow rates can be used as a biomarker to differentiate central and peripheral airway inflammation. However, the role of alveolar nitric oxide (CaNO) indicating peripheral airway inflammation remains unclear in gastroesophageal reflux-associated cough (GERC). OBJECTIVES: We aimed to characterize the changes in alveolar nitric oxide (CaNO) and determine its clinical implication in GERC. DESIGN: This is a single-center prospective observational study. METHODS: FeNOs at exhalation flow rates of 50 and 200 ml/s were measured in 102 patients with GERC and 134 patients with other causes of chronic cough (non-GERC). CaNO was calculated based on a two-compartment model and the factors associated with CaNO were analyzed. The effect of anti-reflux therapy on CaNO was examined in 26 GERC patients with elevated CaNO. RESULTS: CaNO was significantly elevated in GERC compared with that in non-GERC (4.6 ± 4.4 ppb versus 2.8 ± 2.3 ppb, p < 0.001). GERC patients with high CaNO (>5 ppb) had more proximal reflux events (24 ± 15 versus 9 ± 9 episodes, p = 0.001) and a higher level of pepsin (984.8 ± 492.5 versus 634.5 ± 626.4 pg/ml, p = 0.002) in sputum supernatant than those with normal CaNO. More GERC patients with high CaNO required intensified anti-reflux therapy (χ2 = 3.963, p = 0.046), as predicted by a sensitivity of 41.7% and specificity of 83.3%. Cough relief paralleled a significant improvement in CaNO (8.3 ± 3.0 versus 4.8 ± 2.6 ppb, p < 0.001). CONCLUSION: Peripheral airway inflammation can be assessed by CaNO measurement in GERC. High CaNO indicates potential micro-aspiration and may predict a necessity for intensified anti-reflux therapy.


Role of CaNO in GERCWhy was the study done? This study aimed to investigate the role of concentration of alveolar nitric oxide (CaNO) as a biomarker for peripheral airway inflammation in patients with gastroesophageal reflux-associated cough (GERC). The evaluation of airway inflammation in GERC has not been widely practiced in clinical settings, and the potential of CaNO as a biomarker remained unclear.What did the researchers do? The researchers conducted a prospective study involving patients diagnosed with GERC and compared the changes in CaNO levels between GERC patients and those with cough due to other causes. The study also identified potential factors contributing to elevated CaNO levels in GERC patients relative to the normal range. Additionally, CaNO level changes were evaluated in a subgroup of GERC patients with initially elevated CaNO levels (n = 26).What did the researchers find? The study found that CaNO levels were significantly increased in GERC patients. Using a reference value for normal CaNO, the GERC patients were divided into a high CaNO cohort and a normal CaNO cohort. More proximal reflux episodes and higher level of pepsin in sputum supernatant were observed in the high CaNO cohort. Moreover, CaNO demonstrated moderate predictive value for the therapeutic efficacy of intensified anti-reflux therapy in GERC patients. After several weeks of anti-reflux therapy, CaNO levels significantly decreased along with the resolution of cough. These findings further confirmed the predictive value of CaNO for anti-reflux therapy.What do the findings mean? The findings suggest that CaNO may have the potential to be used as a non-invasive biomarker for detecting peripheral airway inflammation in GERC patients. Increased CaNO may be associated with potential micro-aspiration. Furthermore, high CaNO may predict the need for intensified anti-reflux therapy.


Gastroesophageal Reflux , Nitric Oxide , Humans , Gastroesophageal Reflux/diagnosis , Gastroesophageal Reflux/complications , Cough/diagnosis , Cough/etiology , Inflammation/diagnosis , Sputum , Breath Tests
11.
J Ethnopharmacol ; 326: 117965, 2024 May 23.
Article En | MEDLINE | ID: mdl-38423410

ETHNOPHARMACOLOGICAL RELEVANCE: Scrophulariae Radix (Xuanshen [XS]) has been used for several years to treat hyperthyroidism. However, its effective substances and pharmacological mechanisms in the treatment of hyperthyroidism and thyroid hormone-induced liver and kidney injuries have not yet been elucidated. AIM OF THE STUDY: This study aimed to explore the pharmacological material basis and potential mechanism of XS therapy for hyperthyroidism and thyroid hormone-induced liver and kidney injuries based on network pharmacology prediction and experimental validation. MATERIALS AND METHODS: Based on 31 in vivo XS compounds identified using ultra-performance liquid chromatography tandem quadruple exactive orbitrap high-resolution accurate-mass spectrometry (UPLC-QE-HRMS), a network pharmacology approach was used for mechanism prediction. Systematic networks were constructed to identify the potential molecular targets, biological processes (BP), and signaling pathways. A component-target-pathway network was established. Mice were administered levothyroxine sodium through gavage for 30 d and then treated with different doses of XS extract with or without propylthiouracil (PTU) for 30 d. Blood, liver, and kidney samples were analyzed using an enzyme-linked immunosorbent assay (ELISA) and western blotting. RESULTS: A total of 31 prototypes, 60 Phase I metabolites, and 23 Phase II metabolites were tentatively identified in the plasma of rats following the oral administration of XS extract. Ninety-six potential common targets between the 31 in vivo compounds and the diseases were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that Bcl-2, BAD, JNK, p38, and ERK1/2 were the top targets. XS extract with or without PTU had the following effects: inhibition of T3/T4/fT3/fT4 caused by levothyroxine; increase of TSH levels in serum; restoration of thyroid structure; improvement of liver and kidney structure and function by elevating the activities of anti-oxidant enzymes catalase (CAT),superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px); activation anti-apoptotic proteins Bcl-2; inhibition the apoptotic protein p-BAD; downregulation inflammation-related proteins p-ERK1/2, p-JNK, and p-p38; and inhibition of the aggregation of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6, as well as immune cells in the liver. CONCLUSION: XS can be used to treat hyperthyroidism and liver and kidney injuries caused by thyroid hormones through its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. In addition, serum pharmacochemical analysis revealed that five active compounds, namely 4-methylcatechol, sugiol, eugenol, acetovanillone, and oleic acid, have diverse metabolic pathways in vivo and exhibit potential as effective therapeutic agents.


Drugs, Chinese Herbal , Hyperthyroidism , Rats , Mice , Animals , Antioxidants/pharmacology , Network Pharmacology , Liver , Thyroid Hormones/metabolism , Hyperthyroidism/chemically induced , Hyperthyroidism/drug therapy , Thyroxine , Kidney/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/metabolism , Molecular Docking Simulation
12.
Sci Total Environ ; 918: 170697, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38331272

Heterotrophic ammonia assimilation (HAA) process had been widely used in the treatment of high salt wastewater, but the electro enhanced coupling process and electron transfer process were rarely studied. In this study, a HAA process coupled microbial fuel cell (MFC) system was established to treat ammonia-containing wastewater under increasing salinity to achieve nitrogen recovery and electricity generation. Up to 95.4 % NH4+-N and 96.4 % COD removal efficiencies were achieved at 2 % salinity in HAA-MFC. The maximum power density and current density at 2 % salinity were 29.93 mW/m2 and 182.37 mA/m2, respectively. The residual organic matter in the cathode effluent was effectively removed by the anode. The increase of salinity not only enhanced the sludge settling performance and activity, but also promoted the enzyme activity and amino acid production of the ammonia assimilation pathway. Marinobacter and Halomonas were gradually enriched at the anode and cathode with increased salinity to promote ammonia assimilation and electron production. This research offered a promising solution to overcome salinity-related challenges in wastewater treatment and resource recovery.


Bioelectric Energy Sources , Wastewater , Ammonia/metabolism , Electricity , Bioreactors , Electrodes
14.
Int J Biol Macromol ; 258(Pt 1): 128933, 2024 Feb.
Article En | MEDLINE | ID: mdl-38143071

In this study, zein-gallic acid covalent complex prepared by alkali treatment was utilized as an emulsifier to stabilize cinnamon essential oil (CEO) Pickering emulsion, and the chitosan-based (CZGE) films loaded with CEO Pickering emulsion were prepared by blending. The influences of different contents of CEO Pickering emulsion on the physical properties and biological activities of CZGE films were investigated. The results showed that Pickering emulsion had good compatibility with chitosan matrix and enhanced the interaction between film-forming matrix polymer. In addition, incorporating with CEO Pickering emulsion (15 %, v/v) significantly improved the mechanical and barrier properties of the films, and also enhanced the light transmittance and thermal stability of the films. Furthermore, the loading of emulsion also improved the antioxidant activities of the films and led to the formation of high antimicrobial property against food pathogens, and the slow-release behavior of CEO could effectively extend the biological activity of the films. These results suggested that Pickering emulsion has potential as a loading system and a plasticizer in active packaging, and the feasibility of CZGE film in food packaging.


Chitosan , Nanoparticles , Oils, Volatile , Zein , Cinnamomum zeylanicum , Gallic Acid , Emulsions , Anti-Bacterial Agents
15.
Sci Rep ; 13(1): 19780, 2023 11 13.
Article En | MEDLINE | ID: mdl-37957233

Nitrogen plays a significant role in influencing various physiological processes in plants, thereby impacting their ability to withstand abiotic stresses. This study used hydroponics to compare the effects of three nitrogen supply levels (1N, 1/2N and 1/4N) on the antioxidant capacity of rice varieties JJ88 (nitrogen efficient) and XN999 (nitrogen inefficient) with different nitrogen use efficiencies. The results show that compared with the XN999 variety, the JJ88 variety has stronger adaptability to low-nitrogen conditions, which is mainly reflected in the relatively small decrease in dry weight and net photosynthetic rate (Pn); In the early stage of low-nitrogen treatment (0-7 d), the [Formula: see text] production rate, hydrogen peroxide (H2O2) and malondialdehyde (MDA) content of JJ88 variety increased relatively slightly, but the superoxide dismutase (SOD), peroxide The activity of enzyme (POD) and catalase (CAT) increased significantly; After low-nitrogen treatment, the ASA-GSH cycle enzyme activity of JJ88 variety was relatively high, and the dehydroascorbate reductase (DHAR) activity after 14 days of low-nitrogen treatment was higher than that of 1N treatment; The content of reduced ascorbic acid (ASA) in non-enzymatic antioxidants was lower than that of 1N treatment after 14 days of low nitrogen treatment; The contents of oxidized dehydroascorbic acid (DHA) and carotenoids (Car) were higher than those of 1N treatment after 21d and 14d of low nitrogen treatment respectively; The contents of reduced glutathione (GSH), oxidized glutathione (GSSG) and proline (Pro) showed a larger upward trend during the entire low-nitrogen treatment period. In summary, the JJ88 rice variety has a strong ability to regulate oxidative stress and osmotic damage under low nitrogen conditions. It can slow down plant damage by regulating antioxidant enzyme activity and antioxidant content. This provides a basis for achieving nitrogen reduction and efficiency improvement in rice and the breeding of nitrogen-efficient varieties.


Antioxidants , Oryza , Antioxidants/metabolism , Seedlings/metabolism , Oryza/metabolism , Ascorbic Acid/pharmacology , Hydrogen Peroxide/pharmacology , Nitrogen/pharmacology , Plant Breeding , Oxidative Stress , Catalase/metabolism , Glutathione/metabolism , Glutathione Disulfide/pharmacology
16.
Allergy Asthma Immunol Res ; 15(6): 795-811, 2023 Nov.
Article En | MEDLINE | ID: mdl-37957796

PURPOSE: Only limited studies have depicted the unique features and management of refractory chronic cough (RCC) and unexplained chronic cough (UCC). These led to the initiation of this study, which reported the demographic characteristics, manifestations, and long-term outcomes on a large series of consecutive RCC/UCC patients, providing a guideline-led real-world clinical experience. METHODS: Retrospective baseline information was obtained from Clinical Research Database (January 2016 to May 2021). At least 6 months after the last clinic visit, included subjects were prospectively followed up. RESULTS: Three hundred and sixty-nine RCC and UCC patients (199 females, 53.9%) were analyzed. The median cough duration was 24.0 (12.0-72.0) months. Laryngeal symptoms were reported in 95.9% of the patients. The common triggers for coughing were talking (74.9%), pungent odors (47.3%), eating (45.5%), and cold air (42.8%). RCC was considered in 38.2%, and the remainder of 228 patients had UCC, with an equal sex distribution (P = 0.66). Among the 141 RCCs, 90.8% (128) had refractory reflux cough, which was more responsive to current treatments (P < 0.01). Although most features and test results between RCC and UCC were similar, UCC was more commonly inappropriately treated (P < 0.01). Nineteen (7.7-41.1) months after the final clinic visit, 31.2% still coughed persistently, while 68.8% reported cough improvement or remission. RCC reported more favorable treatment outcomes (including cough improvement, control, and spontaneous remission) than UCC (P < 0.01). Coughs with long duration before the initial cough clinic visit (P < 0.01), frequent urinary incontinence (P < 0.01), and being sensitive to "talking" (P < 0.01) or "cold air" (P < 0.01) were less likely to be solved. CONCLUSIONS: The current treatments only improve cough symptoms in two-thirds of patients. Clinical indicators for treatment failure were those coughing for long duration and being sensitive to "talking" or "cold air."

17.
J Environ Manage ; 348: 119465, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37924697

Grassland degradation poses a serious threat to biodiversity, ecosystem services, and human well-being. In this study, we investigated grassland degradation in Zhaosu County, China, between 2001 and 2020, and analyzed the impacts of climate change and human activities using the Miami model. The actual net primary productivity (ANPP) obtained with CASA (Carnegie-Ames-Stanford Approach) modeling, showed a decreasing trend, reflecting the significant degradation that the grasslands in Zhaosu County have experienced in the past 20 years. Grassland degradation was found to be highest in 2018, while the degraded area continuously decreased in the last 3 years (2018-2020). Climatic factors for found to be the dominant factor affecting grassland degradation, particularly the decrease in precipitation. On the other hand, human activities were found to be the main factor affecting improvement of grasslands, especially in recent years. This finding profoundly elucidates the underlying causes of grassland degradation and improvement and helps implement ecological conservation and restoration measures. From a practical perspective, the research results provide an important reference for the formulation of policies and management strategies for sustainable land use.


Ecosystem , Grassland , Humans , Climate Change , China , Human Activities
19.
Nat Mater ; 22(12): 1499-1506, 2023 Dec.
Article En | MEDLINE | ID: mdl-37770677

Recently, the increasing demand for data-centric applications is driving the elimination of image sensing, memory and computing unit interface, thus promising for latency- and energy-strict applications. Although dedicated electronic hardware has inspired the development of in-memory computing and in-sensor computing, folding the entire signal chain into one device remains challenging. Here an in-memory sensing and computing architecture is demonstrated using ferroelectric-defined reconfigurable two-dimensional photodiode arrays. High-level cognitive computing is realized based on the multiplications of light power and photoresponsivity through the photocurrent generation process and Kirchhoff's law. The weight is stored and programmed locally by the ferroelectric domains, enabling 51 (>5 bit) distinguishable weight states with linear, symmetric and reversible manipulation characteristics. Image recognition can be performed without any external memory and computing units. The three-in-one paradigm, integrating high-level computing, weight memorization and high-performance sensing, paves the way for a computing architecture with low energy consumption, low latency and reduced hardware overhead.

20.
J Hazard Mater ; 459: 132102, 2023 10 05.
Article En | MEDLINE | ID: mdl-37531758

Remediation of petroleum-contaminated soil is a widely concerned challenge. As an ecofriendly method, the performance improvement of indigenous microbial degradation is facing the bottleneck. In this study, a strain with high efficiency of petroleum degradation was isolated from the petroleum-contaminated soil and identified and named as Bacillus sp. Z-13. The strain showed the ability to produce lipopeptide surfactant which could improve 66% more petroleum hydrocarbons eluted. Strain Z-13 and its biosurfactant exhibited broad environmental adaptability to salinity (0-8%), pH (6-9) and temperature (15-45 °C). With the addition of strain Z-13 and the stimulation of NH4Cl, up to 59% of the petroleum in the contaminated soil was removed at the carbon to nitrogen ratio of 10. Microbial community analysis showed that petroleum-degrading bacteria, represented by Bacillus, became the dominant species at genus level and played an important role in the remediation. Additionally, ammonium stimulation facilitated both pathways of ammonium assimilation and nitrification in native microorganisms to achieve efficient degradation of petroleum hydrocarbons. This study could provide a promising approach for stable, environmental-friendly and efficient remediation of petroleum-contaminated soil.


Bacillus , Environmental Restoration and Remediation , Petroleum , Soil Pollutants , Bacillus/metabolism , Biodegradation, Environmental , Petroleum/metabolism , Soil/chemistry , Nitrogen/metabolism , Soil Pollutants/metabolism , Bacteria/metabolism , Hydrocarbons/metabolism , Soil Microbiology
...